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1 Coordinate Transformation

1.1 HOMOGENEOUS COORDINATES

A position vector in a three-dimensional space (Fig. 1.1.1) may be represented (i) in
vector form as

rm = OmM = xmim + ymjm + zmkm (1.1.1)

where (im, jm, km) are the unit vectors of coordinate axes, and (ii) by the column matrix

rm =

 xm

ym

zm


 . (1.1.2)

The subscript “m” indicates that the position vector is represented in coordinate system
Sm(xm, ym, zm). To save space while designating a vector, we will also represent the
position vector by the row matrix,

rm = [xm ym zm]T . (1.1.3)

The superscript “T” means that rT
m is a transpose matrix with respect to rm.

A point – the end of the position vector – is determined in Cartesian coordinates with
three numbers: x, y, z. Generally, coordinate transformation in matrix operations
needs mixed matrix operations where both multiplication and addition of matrices
must be used. However, only multiplication of matrices is needed if position vectors are
represented with homogeneous coordinates. Application of such coordinates for
coordinate transformation in theory of mechanisms has been proposed by Denavit &
Hartenberg [1955] and by Litvin [1955]. Homogeneous coordinates of a point in a three-
dimensional space are determined by four numbers (x∗, y∗, z∗, t∗) which are not equal
to zero simultaneously and of which only three are independent. Assuming that t∗ �= 0,
ordinary coordinates and homogeneous coordinates may be related as follows:

x = x∗

t∗ y = y∗

t∗ z = z∗

t∗ . (1.1.4)

1
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2 Coordinate Transformation

Figure 1.1.1: Position vector in Cartesian coordi-
nate system.

With t∗ = 1, a point may be specified by homogeneous coordinates such as (x, y, z, 1),
and a position vector may be represented by

rm =




xm

ym

zm

1


 or

rm = [xm ym zm 1]T .

1.2 COORDINATE TRANSFORMATION IN MATRIX REPRESENTATION

Consider two coordinate systems Sm(xm, ym, zm) and Sn(xn, yn, zn) (Fig. 1.2.1). Point
M is represented in coordinate system Sm by the position vector

rm = [xm ym zm 1]T . (1.2.1)

The same point M can be determined in coordinate system Sn by the position vector

rn = [xn yn zn 1]T (1.2.2)

with the matrix equation

rn = Mnmrm. (1.2.3)
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1.2 Coordinate Transformation in Matrix Representation 3

Figure 1.2.1: Derivation of coordinate transforma-
tion.

Matrix Mnm is represented by

Mnm =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1




=




(in · im) (in · jm) (in · km) (OnOm · in)

(jn · im) (jn · jm) (jn · km) (OnOm · jn)

(kn · im) (kn · jm) (kn · km) (OnOm · kn)

0 0 0 1




=




cos( ̂xn, xm) cos( ̂xn, ym) cos( ̂xn, zm) x(Om)
n

cos( ̂yn, xm) cos( ̂yn, ym) cos( ̂yn, zm) y(Om)
n

cos( ̂zn, xm) cos( ̂zn, ym) cos( ̂zn, zm) z(Om)
n

0 0 0 1


 . (1.2.4)

Here, (in, jn, kn) are the unit vectors of the axes of the “new” coordinate system;
(im, jm, km) are the unit vectors of the axes of the “old” coordinate system; On and
Om are the origins of the “new” and “old” coordinate systems; subscript “nm” in the
designation Mnm indicates that the coordinate transformation is performed from Sm to
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4 Coordinate Transformation

Sn. The determination of elements alk (k = 1, 2, 3; l = 1, 2, 3) of matrix Mnm is based
on the following rules:

(i) Elements of the 3 × 3 submatrix

Lnm =

a11 a12 a13

a21 a22 a23

a31 a32 a33


 (1.2.5)

represent the direction cosines of the “old” unit vectors (im, jm, km) in the “new”
coordinate systems Sn. For instance, a21 = cos( ̂yn, xm), a32 = cos( ̂zn, ym), and so
on. The subscripts of elements akl in matrix (1.2.5) indicate the number l of the
“old” coordinate axis and the number k of the “new” coordinate axis. Axes x, y, z
are given numbers 1, 2, and 3, respectively.

(ii) Elements a14, a24, and a34 represent the “new” coordinates x(Om)
n , y(Om)

n , z(Om)
n of

the “old” origin Om.

Recall that nine elements of matrix Lnm are related by six equations that express the
following:

(1) Elements of each row (or column) are direction cosines of a unit vector. Thus,

a2
11 + a2

12 + a2
13 = 1, a2

11 + a2
21 + a2

31 = 1, · · · . (1.2.6)

(2) Due to orthogonality of unit vectors of coordinate axes, we have

[a11 a12 a13] [a21 a22 a23]T = 0

[a11 a21 a31] [a12 a22 a32]T = 0. (1.2.7)

An element of matrix Lnm can be represented by a respective determinant of the second
order [Strang, 1988]. For instance,

a11 =
∣∣∣∣a22 a23

a32 a33

∣∣∣∣ , a23 = (−1)
∣∣∣∣a11 a12

a31 a32

∣∣∣∣ . (1.2.8)

To determine the new coordinates (xn, yn, zn, 1) of point M, we have to use the rule
of multiplication of a square matrix (4 × 4) and a column matrix (4 × 1). (The number
of rows in the column matrix is equal to the number of columns in matrix Mnm.)
Equation (1.2.3) yields

xn = a11xm + a12ym + a13zm + a14

yn = a21xm + a22ym + a23zm + a24

zn = a31xm + a32ym + a33zm + a34.

(1.2.9)

The purpose of the inverse coordinate transformation is to determine the coordinates
(xm, ym, zm), taking as given coordinates (xn, yn, zn). The inverse coordinate transfor-
mation is represented by

rm = Mmnrn. (1.2.10)

The inverse matrix Mmn indeed exists if the determinant of matrix Mnm differs from
zero.
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1.2 Coordinate Transformation in Matrix Representation 5

There is a simple rule that allows the elements of the inverse matrix to be determined
in terms of elements of the direct matrix. Consider that matrix Mnm is given by

Mnm =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1


 . (1.2.11)

It is necessary to determine the elements of matrix Mmn represented by

Mmn =




b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

0 0 0 1


 . (1.2.12)

Here,

Mmn = M−1
nm, MmnMnm = I

where I is the identity matrix.
The submatrix Lmn of the order (3 × 3) is determined as follows:

Lmn =

b11 b12 b13

b21 b22 b23

b31 b32 b33


 =


a11 a21 a31

a12 a22 a32

a13 a23 a33


 = LT

nm. (1.2.13)

The remaining elements (b14, b24, and b34) are determined with the following equations:

b14 = −(a11a14 + a21a24 + a31a34) ⇒ −




: a11 : a12 a13 : a14 :
: a21 : a22 a23 : a24 :
: a31 : a32 a33 : a34 :

: 0 : 0 0 : 1 :




b24 = −(a12a14 + a22a24 + a32a34) ⇒ −




a11 : a12 : a13 : a14 :
a21 : a22 : a23 : a24 :
a31 : a32 : a33 : a34 :

0 : 0 : 0 : 1 :




b34 = −(a13a14 + a23a24 + a33a34) ⇒ −




a11 a12 : a13 : : a14 :
a21 a22 : a23 : : a24 :
a31 a32 : a33 : : a34 :
0 0 : 0 : : 1 :


 . (1.2.14)

The columns to be multiplied are marked.
To perform successive coordinate transformation, we need only to follow the product

rule of matrix algebra. For instance, the matrix equation

rp = Mp(p−1)M(p−1)(p−2) · · · M32M21r1 (1.2.15)

represents successive coordinate transformation from S1 to S2, from S2 to S3, . . . , from
Sp−1 to Sp.
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6 Coordinate Transformation

To perform transformation of components of free vectors, we need only to apply
3 × 3 submatrices L, which may be obtained by eliminating the last row and the last
column of the corresponding matrix M. This results from the fact that the free-vector
components (projections on coordinate axes) do not depend on the location of the origin
of the coordinate system.

The transformation of vector components of a free vector A from system Sm to Sn is
represented by the matrix equation

An = LnmAm (1.2.16)

where

An =




Axn

Ayn

Azn


 , Lnm =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 , Am =




Axm

Aym

Azm


 . (1.2.17)

A normal to the gear tooth surface is a sliding vector because it may be translated along
its line of action. However, we may transform the surface normal as a free vector if the
surface point where the surface normal is considered will be transferred simultaneously.

1.3 ROTATION ABOUT AN AXIS

Two Main Problems
We consider a general case in which the rotation is performed about an axis that does
not coincide with any axis of the employed coordinate system. We designate the unit
vector of the axis of rotation by c (Fig. 1.3.1) and assume that the rotation about c may
be performed either counterclockwise or clockwise.

Henceforth we consider two coordinate systems: (i) the fixed one, Sa ; and (ii) the
movable one, Sb. There are two typical problems related to rotation about c. The first
one can be formulated as follows.

Consider that a position vector is rigidly connected to the movable body. The initial
position of the position vector is designated by OA = ρ (Fig. 1.3.1). After rotation
through an angle φ about c, vector ρ will take a new position designated by OA

∗ = ρ∗.
Both vectors, ρ and ρ∗ (Fig. 1.3.1), are considered to be in the same coordinate system,
say Sa . Our goal is to develop an equation that relates components of vectors ρa and ρ∗

a .
(The subscript “a” indicates that the two vectors are represented in the same coordinate
system Sa .) Matrix equation

ρ∗
a = Laρa (1.3.1)

describes the relation between the components of vectors ρ and ρ∗ that are represented
in the same coordinate system Sa.

The other problem concerns representation of the same position vector in different
coordinate systems. Our goal is to derive matrix Lba in matrix equation

ρb = Lbaρa . (1.3.2)
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1.3 Rotation About an Axis 7

Figure 1.3.1: Rigid body rotation.

The designations ρa and ρb indicate that the same position vector ρ is represented
in coordinate systems Sa and Sb, respectively. Although the same position vector is
considered, the components of ρ in coordinate systems Sa and Sb are different and we
designate them by

ρa = a1ia + a2ja + a3ka (1.3.3)

and

ρb = b1ib + b2jb + b3kb. (1.3.4)

Matrix Lba is an operator that transforms the components [a1 a2 a3]T into
[b1 b2 b3]T. It will be shown below that operators La and Lba are related.

Problem 1. Relations between components of vectors ρa and ρ∗
a .

Recall thatρa andρ∗
a are two position vectors that are represented in the same coordinate

system Sa . Vector ρ represents the initial position of the position vector, before rotation,
and ρ∗ represents the position vector after rotation about c. The following derivations
are based on the assumption that rotation about c is performed counterclockwise. The
procedure of derivations (see also Suh & Radcliffe, 1978, Shabana, 1989, and others)
is as follows.

Step 1: We represent ρ∗
a by the equation (Fig. 1.3.1)

ρ∗
a = OM + MN + NA∗ (1.3.5)
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where

OM = (ca · ρa )ca = (ca · ρ∗
a )ca (1.3.6)

and ca is the unit vector of the axis of rotation that is represented in Sa .
Step 2: Vector ρa is represented by the equation

ρa = OM + MA = (ca · ρa )ca + MA (1.3.7)

that yields

MA = ρa − (ca · ρa )ca . (1.3.8)

We emphasize that a vector being rotated about c generates a cone with an apex
angle α. Thus, both vectors, ρ and ρ∗, are the generatrices of the same cone, as shown in
Fig. 1.3.1.

Step 3: Vector MN has the same direction as MA and this yields

|MN| = |MA∗| cos φ = |MA| cos φ = ρ sin α cos φ (1.3.9)

where α is the apex angle of the generated cone, |MA| = ρ sin α, and ρ is the magnitude
of ρ.

Equations (1.3.8) and (1.3.9) yield

MN = |MN| MA

|MA| = [ρa − (ca · ρa )ca ] cos φ. (1.3.10)

Step 4: Vector NA∗ has the same direction as (ca × ρa ) and may be represented by

NA∗ = ca × ρa

|ca × ρa | |NA∗| = sin φ(ca × ρa ). (1.3.11)

Here,

|NA∗| = |MA∗| sin φ = ρ sin α sin φ, |ca × ρa | = ρ sin α.

Step 5: Equations (1.3.5), (1.3.6), (1.3.10), and (1.3.11) yield

ρ∗
a = ρa cos φ + (1 − cos φ)(ca · ρa )ca + sin φ(ca × ρa ). (1.3.12)

Step 6: It is easy to prove that

(ca · ρa )ca = ca × (ca × ρa ) + ρa (1.3.13)

because

ca × (ca × ρa ) = (ca · ρa )ca − ρa (ca · ca ).

Step 7: Equations (1.3.12) and (1.3.13) yield

ρ∗
a = ρa + (1 − cos φ)[ca × (ca × ρa )] + sin φ(ca × ρa ). (1.3.14)

Equation (1.3.14) is known as the Rodrigues formula. According to the investigation
by Cheng & Gupta [1989], this equation deserves to be called the Euler–Rodrigues,
formula.
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Step 8: Additional derivations are directed at representation of the Euler–Rodrigues
formula in matrix form.

The cross product (ca × ρa ) may be represented in matrix form by

ca × ρa = Csρa (1.3.15)

where Cs is the skew-symmetric matrix represented by

Cs =

 0 −c3 c2

c3 0 −c1

−c2 c1 0


 . (1.3.16)

Vector ca is represented by

ca = c1ia + c2ja + c3ka . (1.3.17)

Step 9: Equations (1.3.14), (1.3.15), and (1.3.16) yield the following matrix repre-
sentation of the Euler–Rodrigues formula:

ρ∗
a = [

I + (1 − cos φ)(Cs )2 + sin φCs ]ρa = Laρa (1.3.18)

where I is the 3 × 3 identity matrix. While deriving Eqs. (1.3.14) and (1.3.18), we
assumed that the rotation is performed counterclockwise. For the case of clockwise
rotation, it is necessary to change the sign preceding sin φ to its opposite. The expression
for matrix La that will cover two directions of rotation is

La = I + (1 − cos φ)(Cs )2 ± sin φCs . (1.3.19)

The upper sign preceding sin φ corresponds to counterclockwise rotation and the lower
sign corresponds to rotation in a clockwise direction. In both cases the unit vector c
must be expressed by the same Eq. (1.3.17) that determines the orientation of c but
not the direction of rotation. The direction of rotation is identified with the proper sign
preceding sin φ in Eq. (1.3.19).

Problem 2. Recall that our goal is to derive the operator Lba in matrix equation (1.3.2)
that transforms components of the same vector (see Eqs. (1.3.3) and (1.3.4)). It will be
shown below that the sought-for operator is represented as

Lba = LT
a = I + (1 − cos φ)(Cs )2 ∓ sin φCs . (1.3.20)

Operator Lba can be obtained from operator La given by Eq. (1.3.19) by changing the
sign of the angle of rotation, φ. The upper and lower signs preceding sin φ in Eq. (1.3.20)
correspond to the cases where Sa will coincide with Sb by rotation counterclockwise
and clockwise, respectively. The proof is based on the determination of components of
the same vector, say vector OA shown in Fig. 1.3.1, in coordinate systems Sa and Sb.

Step 1: We consider initially that vector OA is represented in Sa as

ρa = [a1 a2 a3]T. (1.3.21)

Step 2: To determine components of vector OA in Sb we consider first that coordinate
system Sb and the previously mentioned position vector are rotated as one rigid body
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about c. After rotation through angle φ, position vector OA will take the position OA
∗

and can be represented in Sb as

OA
∗ = a1ib + a2jb + a3kb. (1.3.22)

It is obvious that vector OA
∗

has in Sb the same components as vector OA has in Sa .

Step 3: We consider now in Sb two vectors OA
∗

and OA. Vector OA
∗

will coincide
with OA after clockwise rotation about c. The components of vectors OA

∗
and OA in

Sb are related by an equation that is similar to Eq. (1.3.19). The difference is that we
now have to consider that the rotation from OA

∗
to OA is performed clockwise. Then

we obtain

(OA)b = Lb(OA
∗
)b = [

I + (1 − cos φ)(Cs )2 − sin φCs ] (OA
∗
)b. (1.3.23)

Designating components of (OA)b by [b1 b2 b3]T, we receive

[b1 b2 b3]T = [I + (1 − cos φ)(Cs )2 − sin φCs ][a1 a2 a3]T. (1.3.24)

Step 4: We have now obtained components of the same vector OA in coordinate
systems Sa and Sb, respectively. The matrix equation that describes transformation of
components of OA is

(OA)b = Lba (OA)a . (1.3.25)

For the case in which rotation from Sa to Sb is performed counterclockwise we have
obtained that

Lba = I + (1 − cos φ)(Cs )2 − sin φCs . (1.3.26)

Similarly, for the case in which rotation from Sa to Sb is performed clockwise, we obtain

Lba = I + (1 − cos φ)(Cs )2 + sin φCs . (1.3.27)

The general description of operator Lba and the respective coordinate transformation
are as follows:

ρb = Lbaρa = [
I + (1 − cos φ)(Cs )2 ∓ sin φCs ]ρa . (1.3.28)

The upper and lower signs preceding sin φ correspond to the cases in which rotation
from Sa to Sb is performed counterclockwise and clockwise, respectively.

In our identification of coordinate systems Sa and Sb we do not use the terms fixed
and movable. We just consider that Sa is the previous coordinate system and Sb is
the new one, and we take into account how the rotation from Sa to Sb is performed:
counterclockwise or clockwise.

Matrix Lba

Using Eqs. (1.3.26) and (1.3.27), we may represent elements of matrix Lba in terms of
components of unit vector c of the axis of rotation and the angle of rotation φ. Thus,



P1: JYT

CB672-01 CB672/Litvin CB672/Litvin-v2.cls December 19, 2003 17:5

1.3 Rotation About an Axis 11

Figure 1.3.2: Derivation of coordinate transforma-
tion by rotation.

we obtain

Lba =

a11 a12 a13

a21 a22 a23

a31 a32 a33


 . (1.3.29)

Here,

a11 = cos φ
(
1 − c2

1

) + c2
1

a12 = (1 − cos φ)c1c2 ± sin φc3

a13 = (1 − cos φ)c1c3 ∓ sin φc2

a21 = (1 − cos φ)c1c2 ∓ sin φc3

a22 = cos φ
(
1 − c2

2

) + c2
2

a23 = (1 − cos φ)c2c3 ± sin φc1

a31 = (1 − cos φ)c1c3 ± sin φc2

a32 = (1 − cos φ)c2c3 ∓ sin φc1

a33 = cos φ
(
1 − c2

3

) + c2
3.

(1.3.30)

When the axis of rotation coincides with a coordinate axis of Sa , we have to make
two components of unit vector ca equal to zero in Eqs. (1.3.30). For instance, in the
case in which rotation is performed about the za axis (Fig. 1.3.2), we have

ca = ka = [0 0 1]T. (1.3.31)

We emphasize again that in all cases of coordinate transformation only elements (1.3.30)
of matrix Lba , and not the components of ca , depend on the direction of rotation. The
unit vector c can be represented in either of the two coordinate systems, Sa and Sb, by
the equations

c = c1ia + c2ja + c3ka = c1ib + c2jb + c3kb. (1.3.32)

This means that the unit vector c of the axis of rotation has the same components in
both coordinate systems, Sa and Sb. It is easily verified that

[c1 c2 c3]T = Lba [c1 c2 c3]T. (1.3.33)


